Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 61468


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Magnetic fields of chemically peculiar stars. I. The catalog of magnetic CP stars
This is the first paper of the series dedicated to the analysis of themagnetism of chemically peculiar (CP) stars of the upper Main Sequence.We use our own measurements and published data to compile a catalog ofmagnetic CP stars containing a total of 326 objects with confidentlydetected magnetic fields and 29 stars which are very likely to possessmagnetic field. We obtained the data on the magnetism of theoverwhelming majority of the stars solely based on the analysis oflongitudinal field component B e . The surface magneticfield, B s , has been measured for 49 objects. Our analysisshows that the number of magnetic CP stars decreases with increasingfield strength in accordance with exponential law, and stars with B e exceeding 5kG occur rarely (about 3% objects of ourlist).

A statistical analysis of the magnetic structure of CP stars
We present the results of a statistical study of the magnetic structureof upper main sequence chemically peculiar stars. We have modelled asample of 34 stars, assuming that the magnetic morphology is describedby the superposition of a dipole and a quadrupole field, arbitrarilyoriented. In order to interpret the modelling results, we haveintroduced a novel set of angles that provides one with a convenient wayto represent the mutual orientation of the quadrupolar component, thedipolar component, and the rotation axis. Some of our results aresimilar to what has already been found in previous studies, e.g., thatthe inclination of the dipole axis to the rotation axis is usually largefor short-period stars and small for long-period ones - see Landstreet& Mathys (\cite{Landstreet2000}). We also found that forshort-period stars (approximately P<10 days) the plane containing thetwo unit vectors that characterise the quadrupole is almost coincidentwith the plane containing the stellar rotation axis and the dipole axis.Long-period stars seem to be preferentially characterised by aquadrupole orientation such that the planes just mentioned areperpendicular. There is also some loose indication of a continuoustransition between the two classes of stars with increasing rotationalperiod.

Magnetic models of slowly rotating magnetic Ap stars: aligned magnetic and rotation axes
As a result of major surveys carried out during the past decade byMathys and collaborators, we now have measurements with full phasecoverage of several magnetic field moments, including the meanlongitudinal field B_l, the mean field modulus B_s, and in most casesthe mean quadratic field B_mq and mean crossover field B_xover, for asample of 24 chemically peculiar magnetic (Ap) stars. This represents anincrease of a factor of order five in the stellar sample with data ofthis quality, compared to the situation a decade ago. We exploit thisdataset to derive general and statistical properties of the stars in thesample, as follows. First, we fit the available field momentobservations assuming a simple, axisymmetric multipole magnetic fieldexpansion (with dipole, quadrupole, and octupole components) over eachstellar surface. We show that this representation, though not exact,gives an adequate description of the available data for all the stars inthis sample, although the fit parameters are in many cases not unique.We find that many of the stars require an important quadrupole and/oroctupole field component to satisfy the observations, and that some(usually small) deviations from our assumed axisymmetric fielddistributions are certainly present. We examine the inclination i (0<= i <= 90o) of the rotation axis to the line of sightand the obliquity beta (0 <= beta <= 90o) of themagnetic field with respect to the rotation axis, and show that thestars with periods of the order of a month or longer have systematicallysmall values of beta : slowly rotating magnetic stars generally havetheir magnetic and rotation axes aligned to within about 20o,unlike the short period magnetic Ap stars, in which beta is usuallylarge. This is a qualitatively new result, and one which is veryimportant for efforts to understand the evolution of magnetic fields andangular momentum in the magnetic Ap stars.

The HR-diagram from HIPPARCOS data. Absolute magnitudes and kinematics of BP - AP stars
The HR-diagram of about 1000 Bp - Ap stars in the solar neighbourhoodhas been constructed using astrometric data from Hipparcos satellite aswell as photometric and radial velocity data. The LM method\cite{luri95,luri96} allows the use of proper motion and radial velocitydata in addition to the trigonometric parallaxes to obtain luminositycalibrations and improved distances estimates. Six types of Bp - Apstars have been examined: He-rich, He-weak, HgMn, Si, Si+ and SrCrEu.Most Bp - Ap stars lie on the main sequence occupying the whole width ofit (about 2 mag), just like normal stars in the same range of spectraltypes. Their kinematic behaviour is typical of thin disk stars youngerthan about 1 Gyr. A few stars found to be high above the galactic planeor to have a high velocity are briefly discussed. Based on data from theESA Hipparcos astrometry satellite and photometric data collected in theGeneva system at ESO, La Silla (Chile) and at Jungfraujoch andGornergrat Observatories (Switzerland). Tables 3 and 4 are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The mean magnetic field modulus of AP stars
We present new measurements of the mean magnetic field modulus of asample of Ap stars with spectral lines resolved into magnetically splitcomponents. We report the discovery of 16 new stars having thisproperty. This brings the total number of such stars known to 42. Wehave performed more than 750 measurements of the mean field modulus of40 of these 42 stars, between May 1988 and August 1995. The best of themhave an estimated accuracy of 25 - 30 G. The availability of such alarge number of measurements allows us to discuss for the first time thedistribution of the field modulus intensities. A most intriguing resultis the apparent existence of a sharp cutoff at the low end of thisdistribution, since no star with a field modulus (averaged over therotation period) smaller than 2.8 kG has been found in this study. Formore than one third of the studied stars, enough field determinationswell distributed throughout the stellar rotation cycle have beenachieved to allow us to characterize at least to some extent thevariations of the field modulus. These variations are oftensignificantly anharmonic, and it is not unusual for their extrema not tocoincide in phase with the extrema of the longitudinal field (for thefew stars for which enough data exist about the latter). This, togetherwith considerations on the distribution of the relative amplitude ofvariation of the studied stars, supports the recently emerging evidencefor markedly non-dipolar geometry and fine structure of the magneticfields of most Ap stars. New or improved determinations of the rotationperiods of 9 Ap stars have been achieved from the analysis of thevariations of their mean magnetic field modulus. Tentative values of theperiod have been derived for 5 additional stars, and lower limits havebeen established for 10 stars. The shortest definite rotation period ofan Ap star with magnetically resolved lines is 3.4 deg, while thosestars that rotate slowest appear to have periods in excess of 70 or 75years. As a result of this study, the number of known Ap stars withrotation periods longer than 30 days is almost doubled. We brieflyrediscuss the slow-rotation tail of the period distribution of Ap stars.This study also yielded the discovery of radial velocity variations in 8stars. There seems to be a deficiency of binaries with short orbitalperiods among Ap stars with magnetically resolved lines. Based onobservations collected at the European Southern Observatory (La Silla,Chile; ESO programmes Nos. 43.7-004, 44.7-012, 49.7-030, 50.7-067,51.7-041, 52.7-063, 53.7-028, 54.E-0416, and 55.E-0751), at theObservatoire de Haute-Provence (Saint-Michel-l'Observatoire, France), atKitt Peak National Observatory, and at the Canada-France-HawaiiTelescope. Tables 2, 3, and 4 are also available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Πρύμνη
Right ascension:07h38m22.58s
Declination:-27°52'07.6"
Apparent magnitude:9.828
Proper motion RA:-6.9
Proper motion Dec:6
B-T magnitude:9.874
V-T magnitude:9.832

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 61468
TYCHO-2 2000TYC 6547-791-1
USNO-A2.0USNO-A2 0600-06967784
HIPHIP 37181

→ Request more catalogs and designations from VizieR