Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 14028 (W And)


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Optical Spectropolarimetry of Asymptotic Giant Branch and Post-Asymptotic Giant Branch Stars
Spectropolarimetric observations are presented for 21 AGB stars, 13proto-planetary nebulae (PPNs), and two R CrB-type stars. The spectracover the wavelength range from ~4200 to 8400 Å with 16 Åresolution. Among the AGB stars, 8 of 14 M giants, five of six carbonstars, and zero of one S star showed intrinsic polarization. At least 9of 13 PPNs exhibited intrinsic polarization, while the R CrB-type starsshow intrinsic polarization during fading episodes. There is astatistical correlation between mean polarization,

, and IRcolor, K-[12], among the AGB stars such that redder stars tend to bemore polarized. The PPN sample is significantly redder and morepolarized, on average, than the AGB stars. This increase in

with increased reddening is consistent with an evolutionary sequence inwhich AGB stars undergo increasing mass loss, with growing asymmetriesin the dust distribution as they evolve up and then off the AGB into theshort-lived PPN phase. A related trend is found between polarization andmass-loss rate in gas, M˙gas. The detectability ofpolarization increases with mass-loss rate, and probably all AGB starslosing mass at >10-6 Msolar yr-1have detectable polarization. Multiple observations of three polarizedAGB stars show that in some cases

increases withmV, and in others it decreases. If polarization arises fromscattering of starlight off an aysmmetric distribution of grains, thenthe distribution varies with time. Polarized features are detected inthe TiO bands of three M-type Mira variables, in the CN bands of thecarbon stars R Lep and V384 Per, and in the Swan bands of C2in R CrB and two PPNs. Polarization effects in the molecular bandsappear to be more common and the effects are larger in O-rich thanC-rich objects.

Two Micron All Sky Survey, Infrared Astronomical Satellite, and Midcourse Space Experiment Color Properties of Intrinsic and Extrinsic S Stars
We attempt to select new candidate intrinsic and extrinsic S stars inthe General Catalogue of Galactic S Stars (GCGSS) by combining data fromthe Two Micron All Sky Survey, the Infrared Astronomical Satellite, andthe Midcourse Space Experiment. Catalog entries are cross-identified,yielding 528 objects, out of which 29 are known extrinsic S stars and 31are known intrinsic S stars. Their color-color diagrams,(H-[12])-(K-[12]) and (K-[12])-(J-[25]), are drawn and used to identifya new sample of 147 extrinsic and 256 intrinsic S star candidates, whilethe nature of 65 stars remains identified. We infer that about 38%+/-10%of the GCGSS objects are of extrinsic type. Moreover, we think thatcolors such as J-[25] can be used to split off the two categories of Sstars, while single colors are not appropriate. The color-colordiagrams, such as (H-[12])-(K-[12]) and (K-[12])-(J-[25]), are proven tobe powerful tools for distinguishing the two kinds of S stars.

Mass-loss properties of S-stars on the AGB
We have used a detailed non-LTE radiative transfer code to model newAPEX CO(J = 3 → 2) data, and existing CO radio line data, on asample of 40 AGB S-stars. The derived mass-loss-rate distribution has amedian value of 2 × 10-7~Mȯyr-1, and resembles values obtained for similar samples ofM-stars and carbon stars. Possibly, there is a scarcity ofhigh-mass-loss-rate (≥10-5~Mȯyr-1) S-stars. The distribution of envelope gas expansionvelocities is similar to that of the M-stars, the median is 7.5 kms-1, while the carbon stars, in general, have higher gasexpansion velocities. The mass-loss rate correlates well with the gasexpansion velocity, in accordance with results for M-stars and carbonstars.

Full polarization study of SiO masers at 86 GHz
Aims.We study the polarization of the SiO maser emission in arepresentative sample of evolved stars in order to derive an estimate ofthe strength of the magnetic field, and thus determine the influence ofthis magnetic field on evolved stars. Methods: .We madesimultaneous spectroscopic measurements of the 4 Stokes parameters, fromwhich we derived the circular and linear polarization levels. Theobservations were made with the IF polarimeter installed at the IRAM 30m telescope. Results: . A discussion of the existing SiO masermodels is developed in the light of our observations. Under the Zeemansplitting hypothesis, we derive an estimate of the strength of themagnetic field. The averaged magnetic field varies between 0 and 20Gauss, with a mean value of 3.5 Gauss, and follows a 1/r law throughoutthe circumstellar envelope. As a consequence, the magnetic field mayplay the role of a shaping, or perhaps collimating, agent of thecircumstellar envelopes in evolved objects.

Beobachtungssergebnisse Bundesdeutsche Arbeitsgemeinschaft fuer Veraenderliche Sterne e.V.
Not Available

CO observations of Southern molecular clouds. Outflows from young stellar objects GRV 8 and GRV 16
12CO (1-0) observations of two Southern dark clouds (globules)associated with cometary nebulae GRV 8 (a biconical nebula) and GRV 16(a conelike nebula) are presented. GRV 8 shows an outflow from thecentral part of the nebula (where in 2MASS images a star is located,which is perhaps responsible for this outflow); however, both lobes ofthe outflow are redshifted with a velocity of +1.95 km/s with respect tothe molecular cloud. The two opposite redshifted lobes are a rather rarephenomenon that could be explained by the presence of a double starinstead of a single one as the engine responsible for the outflow. Thetwo lobes are almost parallel to the axis of symmetry of the biconicalnebula. In the case of the conelike nebula GRV 16 we observe a bipolaroutflow, where the eastern blueshifted lobe has a velocity of -4 km/swith respect to the molecular cloud, and the western redshifted one hasa velocity +2.5 km/s. The outflow has a direction almost coinciding withthe axis of symmetry of the conelike nebula. The star associated withthe conelike nebula is responsible for this outflow.

Secular Evolution in Mira Variable Pulsations
Stellar evolution theory predicts that asymptotic giant branch (AGB)stars undergo a series of short thermal pulses that significantly changetheir luminosity and mass on timescales of hundreds to thousands ofyears. These pulses are confirmed observationally by the existence ofthe short-lived radioisotope technetium in the spectra of some of thesestars, but other observational consequences of thermal pulses are subtleand may only be detected over many years of observations. Secularchanges in these stars resulting from thermal pulses can be detected asmeasurable changes in period if the star is undergoing Mira pulsations.It is known that a small fraction of Mira variables exhibit largesecular period changes, and the detection of these changes among alarger sample of stars could therefore be useful in evolutionary studiesof these stars. The American Association of Variable Star Observers(AAVSO) International Database currently contains visual data for over1500 Mira variables. Light curves for these stars span nearly a centuryin some cases, making it possible to study the secular evolution of thepulsation behavior on these timescales. In this paper we present theresults of our study of period change in 547 Mira variables using datafrom the AAVSO. We use wavelet analysis to measure the period changes inindividual Mira stars over the span of available data. By making linearfits to the period versus time measurements, we determine the averagerates of period change, dlnP/dt, for each of these stars. We findnonzero dlnP/dt at the 2 σ significance level in 57 of the 547stars, at the 3 σ level in 21 stars, and at the level of 6 σor greater in eight stars. The latter eight stars have been previouslynoted in the literature, and our derived rates of period change largelyagree with published values. The largest and most statisticallysignificant dlnP/dt are consistent with the rates of period changeexpected during thermal pulses on the AGB. A number of other starsexhibit nonmonotonic period change on decades-long timescales, the causeof which is not yet known. In the majority of stars, the periodvariations are smaller than our detection threshold, meaning theavailable data are not sufficient to unambiguously measure slowevolutionary changes in the pulsation period. It is unlikely that morestars with large period changes will be found among heretoforewell-observed Mira stars in the short term, but continued monitoring ofthese and other Mira stars may reveal new and serendipitous candidatesin the future.

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderlichen Serne e.V.
Not Available

Infrared investigation from earth and space on the evolutionary state of a sample of LPV
We selected a sample of highly reddened AGB stars among the sourcesobserved with the SWS instrument on the ISO satellite. These SWS dataallow us to compute the source's photometry in the mid-IR filters of thecamera TIRCAM at the TIRGO telescope. Our photometric data, supplementedwith other measurements taken from the literature, permit to select thecarbon-rich sources in the sample. For these stars, a linear relationholds between dust mass loss and the color index [8.8]-[12.5]. One maythen, from photometric data alone, evaluate the total mass loss (forwhich we used the estimate of \citet{loup}, based on radio data). Theoxygen-rich sources, on the other hand, are distributed in two branches,of which the upper one appears superimposed with carbon stars; the starsin this group have both high luminosity and high wind velocity andtherefore higher masses. Finally S stars lie between the carbon-starbranch and the low-mass oxygen-rich stars, in agreement with theirintermediate evolutionary status.

Beobachtungsegebnisse Bundesdeutsche Arbeitsgemainschaft fur Veranderliche Sterne e.V.
Not Available

Infrared Colors and Variability of Evolved Stars from COBE DIRBE Data
For a complete 12 μm flux-limited sample of 207 IRAS sources(F12>=150 Jy, |b|>=5deg), the majority ofwhich are AGB stars (~87%), we have extracted light curves in seveninfrared bands between 1.25 and 60 μm using the database of theDiffuse Infrared Background Experiment (DIRBE) instrument on the CosmicBackground Explorer (COBE) satellite. Using previous infrared surveys,we filtered these light curves to remove data points affected by nearbycompanions and obtained time-averaged flux densities and infraredcolors, as well as estimates of their variability at each wavelength. Inthe time-averaged DIRBE color-color plots, we find clear segregation ofsemiregulars, Mira variables, carbon stars, OH/IR stars, and red giantswithout circumstellar dust (i.e., V-[12]<5) and with little or novisual variation (ΔV<0.1 mag). The DIRBE 1.25-25 μm colorsbecome progressively redder and the variability in the DIRBE databaseincreases along the oxygen-rich sequence nondusty slightly varying redgiants-->SRb/Lb-->SRa-->Mira-->OH/IR and the carbon-richSRb/Lb-->Mira sequence. This supports previous assertions that theseare evolutionary sequences involving the continued production andejection of dust. The carbon stars are redder than their oxygen-richcounterparts for the same variability type, except in theF12/F25 ratio, where they are bluer. Of the 28sources in the sample not previous noted to be variable, 18 are clearlyvariable in the DIRBE data, with amplitudes of variation of ~0.9 mag at4.9 μm and ~0.6 mag at 12 μm, consistent with them being verydusty Mira-like variables. We also present individual DIRBE light curvesof a few selected stars. The DIRBE light curves of the semiregularvariable L2 Pup are particularly remarkable. The maxima at1.25, 2.2, and 3.5 μm occur 10-20 days before those at 4.9 and 12μm, and, at 4.9 and 12 μm, another maximum is seen between the twonear-infrared maxima.

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

Dense Molecular Gas in Lenticular Galaxies
We made CO and HCN simultaneous observations of lenticular galaxies (NGC404, NGC 3593, and NGC 4293) and detected HCN emission in NGC 3593 andNGC 4293 as well as CO in all the galaxies. TheIHCN/ICO ratios were 0.025 +/- 0.006 and 0.066 +/-0.005 in NGC 3593 and NGC 4293, respectively, which are comparable tothat of late-type spiral galaxies. The average of the IHCN /ICO ratios at the center of 12 nearby spiral galaxiesincluding the late type was 0.055 +/- 0.028. The line profiles of CO andHCN emission showed different shape in both galaxies. The HCN peaks werenot at the systemic velocity of these galaxies, while the CO peaks werenear the systemic velocity. These results suggest that the fraction ofdense molecular gas is high around the center of these galaxies.

Zirconium to Titanium Ratios in a Large Sample of Galactic S Stars
The [Zr/Ti] ratio for a large sample of Galactic S stars has beendetermined using high-quality, high-resolution spectra. The pattern ofZr enhancements in intrinsic and extrinsic S stars is found to differ,and the [Zr/Ti] ratio in the extrinsic S stars clearly links them to thestrong barium stars. In addition, the pattern of [Zr/Ti] ratios seems toindicate that the progression of spectral type M to MS to S to SC is duelargely to an increase in the abundance of s-process elements and notsolely to a changing C/O ratio as claimed by some investigators (such asScalo and Ross).

Near-infrared observations of candidate extrinsic S stars
Photometric observations in the near infrared for 161 S stars, including18 Tc-rich (intrinsic) stars, 19 Tc-deficient (extrinsic) ones and 124candidates for Tc-deficient S stars, are presented in this paper. Basedon some further investigations into the infrared properties of bothTc-rich and Tc-deficient S stars, 104 candidates are identified as verylikely Tc-deficient S stars. The large number of infrared-selectedTc-deficient S stars provides a convenient way to study the physicalproperties and the evolutionary status of this species of S stars.

CO 1st overtone spectra of cool evolved stars: Diagnostics for hydrodynamic atmosphere models
We present spectra covering the wavelength range 2.28 to 2.36 mu m at aresolution of Delta lambda = 0.0007 mu m (or R = 3500) for a sample of24 cool evolved stars. The sample comprises 8 M supergiants, 5 M giants,3 S stars, 6 carbon stars, and 2 RV Tauri variables. The wavelengthscovered include the main parts of the 12C16O v =2-0 and 3-1 overtone bands, as well as the v = 4-2 and 13CO v= 2-0 bandhead regions. CO lines dominate the spectrum for all the starsobserved, and at this resolution most of the observed features can beidentified with individual CO R- or P-branch lines or blends. Theobserved transitions arise from a wide range of energy levels extendingfrom the ground state to E/k > 20 000 K. We looked for correlationsbetween the intensities of various CO absorption line features and otherstellar properties, including IR colors and mass loss rates. Two usefulCO line features are the v = 2-0 R14 line, and the CO v = 2-0 bandhead.The intensity of the 2-0 bandhead shows a trend with K-[12] color suchthat the reddest stars (K-[12] > 3 mag) exhibit a wide range in 2-0bandhead depth, while the least reddened have the deepest 2-0 bandheads,with a small range of variation from star to star. Gas mass loss ratesfor both the AGB stars and the red supergiants in our sample correlatewith the K-[12] color, consistent with other studies. The data implythat stars with dot M_gas < 5x 10-7 Msuny-1 exhibit a much narrower range in the relative strengthsof CO 2-0 band features than stars with higher mass loss rates. Therange in observed spectral properties implies that there are significantdifferences in atmospheric structure among the stars in this sample.Figures 4-9, 11-14, 16, 17, 19-21, 23, 24 are only avalaible inelectronic form at http://www.edpsciences.org

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veraenderliche Sterne e.V.
Not Available

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

On the Relations between Infrared Colors and Mass Loss Rates for S Stars
A relation between the infrared color K-[12] and the mass loss rate,dM/dt, is found for the intrinsic S stars. This relation isqualitatively similar to the ones for carbon stars and oxygen-rich Mirastars, but quantitatively different. It could be useful in the contextof the near infrared surveys, DENIS and 2MASS, which are in progress.Correlations between J-K and [12]-[25] indices and dM/dt are found to beloose for S stars.

Polarimetry of 167 Cool Variable Stars: Data
Multicolor photoelectric polarimetry is presented for 167 stars, most ofwhich are variable stars. The observations constitute a data set thatfor some stars covers a time span of 35 yr. Complex variations are foundover time and wavelength and in both the amount of polarization and itsposition angle, providing constraints for understanding the polarizingenvironments in and around these cool stars.

Stellar and circumstellar evolution of long period variable stars
In a first paper, HIPPARCOS astrometric and kinematic data were used tocalibrate both infrared K and IRAS luminosities at the same time askinematic parameters of Long Period Variable stars (LPVs). Individualestimated absolute magnitudes and a probabilistic assignation togalactic populations were deduced from these calibrations for each LPVof our sample. Here we propose a scenario of simultaneous stellar andcircumstellar evolution according to the galactic populations. Thetransitory states of S and Tc stars allow us to confirm the location ofthe first dredge-up at Mbol=-3.5. There is also evidencesuggesting that a previous enrichment in s-elements from a more evolvedcompanion may accelerate the evolution along the AGB. The possibleevolution to OH LPVs is included in this scenario, and any of thesestars may have a mass at the limit of the capability for a C enrichmentup to C/O > 1. A list of bright massive LPVs with peculiar envelopeand luminosity properties is proposed as Hot Bottom Burning candidates.The He-shell flash star, R Cen, is found to be exceptionally bright andcould become, before leaving the AGB, a C-rich LPV brighter than theusual luminosity limit of carbon stars.

Long period variable stars: galactic populations and infrared luminosity calibrations
In this paper HIPPARCOS astrometric and kinematic data are used tocalibrate both infrared luminosities and kinematical parameters of LongPeriod Variable stars (LPVs). Individual absolute K and IRAS 12 and 25luminosities of 800 LPVs are determined and made available in electronicform. The estimated mean kinematics is analyzed in terms of galacticpopulations. LPVs are found to belong to galactic populations rangingfrom the thin disk to the extended disk. An age range and a lower limitof the initial mass is given for stars of each population. A differenceof 1.3 mag in K for the upper limit of the Asymptotic Giant Branch isfound between the disk and old disk galactic populations, confirming itsdependence on the mass in the main sequence. LPVs with a thin envelopeare distinguished using the estimated mean IRAS luminosities. The levelof attraction (in the classification sense) of each group for the usualclassifying parameters of LPVs (variability and spectral types) isexamined. Table only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/968 or via ASTRIDdatabase (http://astrid.graal.univ-montp2.fr).

Infrared colours for Mira-like long-period variables found in the (Mȯ<~10-7 Msolar yr-1) Hipparcos Catalogue
Near-infrared, JHKL, photometry is presented for 193 Mira andsemi-regular variables that were observed by Hipparcos; periods,bolometric magnitudes and amplitudes are derived for 92 of them. Becauseof the way in which the Hipparcos targets were selected, this group ofstars provides a useful data base of Miras with low mass-loss rates(Mȯ<~10-7Msolaryr-1).Various period-colour relationships are discussed in detail. The colour,particularly BCK = 10.86 - 38.10 K (J - K)0 +64.16(J - K)20 - 50.72(J -K)30 + 19, K-L, at a given period is found todepend on the pulsation amplitude of the star. A comparison with modelssuggests that this is a consequence of atmospheric extension, in thesense that large-amplitude pulsators have very extended atmospheres andredder Mȯ<10-7Msolaryr-1, K-L and H-K but bluerJ-H than their lower amplitude counterparts. The stars with veryextended atmospheres also have higher values of K-[12] and hence highermass-loss rates. This finding provides further evidence for the causalconnection between pulsation and mass loss. Two sequences are identifiedin the Hp-K versus logP diagram (where Hp is the Hipparcos broad-bandmagnitude) at short periods (logP<2.35). At a given period these twogroups have, on average, the same pulsation amplitude, but differentJHKL colours and spectral types. The short-period stars in the bluersequence have similar near-infrared colours to the Miras found inglobular clusters. Long-term trends in the infrared light curves arediscussed for stars that have sufficient data.

Mira kinematics from Hipparcos data: a Galactic bar to beyond the Solar circle
The space motions of Mira variables are derived from radial velocities,Hipparcos proper motions and a period-luminosity relation. Thepreviously known dependence of Mira kinematics on the period ofpulsation is confirmed and refined. In addition, it is found that Miraswith periods in the range 145-200d in the general Solar neighbourhoodhave a net radial outward motion from the Galactic Centre of75+/-18kms-1. This, together with a lag behind the circularvelocity of Galactic rotation of 98+/-19kms-1, is interpretedas evidence for an elongation of their orbits, with their major axesaligned at an angle of ~17° with the Sun-Galactic Centre line,towards positive Galactic longitudes. This concentration seems to be acontinuation to the Solar circle and beyond of the bar-like structure ofthe Galactic bulge, with the orbits of some local Miras probablypenetrating into the bulge. These conclusions are not sensitive to thedistance scale adopted. A further analysis is given of the short-period(SP) red group of Miras discussed in companion papers in this series. InAppendix A the mean radial velocities and other data for 842 oxygen-richMira-like variables are tabulated. These velocities were derived frompublished optical and radio observations.

Trend analysis of 51 carbon long-period variables.
Not Available

Submillimeter- and Millimeter-Wavelength Observations of SIO and HCN in Circumstellar Envelopes of AGB Stars
We report molecular line observations with the Heinrich HertzSubmillimeter Telescope of a sample of 30 asymptotic giant branch starswith spectral types M, S, and C. Measured lines include SiO J=5-4, 8-7,10-9, and HCN J=3-2 and 4-3 transitions, which arise from energy levelsranging from 26 to 115 K above ground. The observed transitions weredetected in almost all stars observed, regardless of spectral type. TheHCN J=3-2 and 4-3 lines in the M stars are bright compared with previousobservations of the J=1-0 line. We calculated emergent spectra for modelcircumstellar envelopes and compare these with the observed lineintensity ratios. We conclude that (1) the HCN line intensity ratios forthe M stars are inconsistent with chemical models in which HCN isproduced via photochemistry in the outer circumstellar envelope. HCNmust be formed by a nonequilibrium chemical process in the innerenvelope or extended stellar atmosphere. (2) The HCN/SiO intensityratios of lines with similar excitation energies clearly separate thecarbon stars from the M and S stars. The M and S stars show a trend ofincreasing HCN/SiO intensity ratios with increasing mass-loss rate. (3)These data support the idea that pulsation-driven shocks result in theformation of organic molecules like HCN in the envelopes of M stars.Observations of these molecules could give useful constraints onhydrodynamic models for stellar mass loss driven by pulsational shocksin the stellar atmosphere. We detected emission from vibrationallyexcited HCN in the v=(0,11c,0), J=3-2 and 4-3 transitionstoward four carbon stars. In one star, V Cyg, the lines are strong andnarrow, and are most likely a result of maser amplification.

Phase-dependent Spectroscopy of Mira Variable Stars
Spectroscopic measurements of Mira variable stars as a function of phaseprobe the stellar atmospheres and underlying pulsation mechanisms. Forexample, measuring variations in TiO, VO, and ZrO with phase can be usedto help determine whether these molecular species are produced in anextended region above the layers where Balmer line emission occurs orbelow this shocked region. Using the same methods, the Balmer lineincrement, where the strongest Balmer line at phase zero is Hδ andnot Hα, can be measured and explanations tested, along withanother peculiarity, the absence of the Hɛ line in the spectra ofMira variables when the other Balmer lines are strong. We present newspectra covering the spectral range from 6200 to 9000 Å of 20 Miravariables. A relationship between variations in the Ca II IR triplet andHα as a function of phase support the hypothesis that Hɛ'sobservational characteristics result from an interaction of Hɛphotons with the Ca II H line. New periods and epochs of variability arealso presented for each star.

Distance Determination of Mass-Losing Stars
Based on the Principal Component Analysis on IRAS colors and the radiodata, the distances to 183 mass-losing red giant stars were determinedusing the radial velocity and Oort's galactic rotation model for azero-point calibration in the distance modulus. Also, based on therequirement of higher accuracy of the distance determination, themass-losing red giant stars were divided into two groups by means of thefirst-principal component representing an intrinsic photometric propertyof the expanding shell; then, the distances were estimated to be log{d(kpc)}=0.458 p_2+0.09+/-0.13 for group 1 and log {d(kpc)}=0.325p_2+0.45+/-0.15 for group 2, where p_2 is the principal componentcorresponding to the distance, as obtained from the IRAS flux, which wasassumed to be inversely proportional to the square of the distance.Thus,these two groups differ from each other not only by theirphotometric properties, but also by their average distances, by a factorof about 2. Systematic differences exist between the two groups in theirpopulation characteristics and in their evolutionary stages.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Andromède
Right ascension:02h17m33.40s
Declination:+44°18'25.0"
Apparent magnitude:6.7
Distance:10000000 parsecs

Catalogs and designations:
Proper NamesW And
  (Edit)
HD 1989HD 14028
USNO-A2.0USNO-A2 1275-01379756
BSC 1991HR 663

→ Request more catalogs and designations from VizieR